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A B S T R A C T  

A Banach space is polyhedral if the unit bMl of each of its finite dimen- 

sional subspaces is a polyhedron. It is known that a polyhedral Banach 
space has a separable dual and is c0-saturated, i.e., each closed infinite 
dimensional subspace contains an isomorph of co. In this paper, we show 

that the Orlicz sequence space hM is isomorphic to a polyhedral Banach 
space if limt--0 M(gt)/M(t)  = oo for some K < oo. We also construct an 
Orlicz sequence space hM which is c0-saturated, but which is not isomor- 
phic to any polyhedral Banach space. This shows that being c0-saturated 
and having a separable dual are not sufficient for a Bana~h space to be 

isomorphic to a polyhedral Banach space. 

A Banach space is said to be p o l y h e d r a l  if the un i t  bal l  of each of its finite 

d imensional  subspaces is a polyhedron.  It  is i s o m o r p h i c a l l y  p o l y h e d r a l  if it 

is isomorphic to a polyhedral  Banach space. F u n d a m e n t a l  results concerning 

polyhedral  Banach spaces were obta ined  by Fonf [1, 2]. 

THEOREM 1 (Fonf): A separable isomorphically polyhedral Banach space is 

co-saturated and has a separable dual. 

Recall tha t  a Banach space is c o - s a t u r a t e d ,  if every closed infinite d imensional  

subspace contains  an  isomorph of Co. Fonf  also proved a character izat ion of 

isomorphically polyhedral  spaces in terms of cer ta in  norming  subsets in the dual. 

In  order to s ta te  the relevant results, we introduce some terminology due to 

Rosenthal  [4, 5]. The (closed) uni t  ball  of a Banach space E is denoted by UE. 
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Definition: Let E be a Banach space. 

(1) A subset W C_ E'  is precise ly  n o r m i n g  (p.n.) if W C_ UE,, and for all 

x e E, there is a ,w E W such that [[x[[ = [w(x)[. 

(2) A subset W C_ E'  is i somorph ica l ly  precise ly  n o r m i n g  (i.p.n.) if W is 

bounded and 

(a) there exists K < c~ such that [[x[[ _< Ksup~¢ W ]w(x)[ for all x E E, 

(b) the supremum suP~ew [w(x)[ is attained at some w0 E W for all 

x E E .  

It is easy to see that  W C_ E ~ is i.p.n, if and only if there is an equivalent 

norm Ill" Ill on E so that  W is p.n. in (E,[[[. [[[)'. 

THEOREM 2 (Fonf): Let E be a separable Banach space. Then E is isomor- 

phically polyhedral i f  and only i r E  I contains a countable i.p.n, subset. 

This paper is devoted mainly to the problem of identifying the isomor- 

phically polyhedral Orlicz sequence spaces. In §1, a characterization theorem 

for isomorphically polyhedral Banach spaces having a shrinking basis is proved. 

This result is applied in §2 to obtain examples of isomorphically polyhedral Or- 

licz spaces. In §3, a non-isomorphically polyhedral, Co-saturated Orlicz sequence 

space is constructed. Since every c0-saturated Orlicz sequence space has a sepa- 

rable dual, this shows that the converse of Theorem 1 fails, answering a question 

posed by Rosenthal [4]. 

Standard Banach space terminology, as may be found in [3], is employed. 

If (en) is a basis of a Banach space E, and [[[. [[[ is a norm an E equivalent 

to the given norm, we say that (en) is m o n o t o n e  with respect to Ill" I][ if 
kq-1 e Ill Ekn=l aneniII ~--- lil E n = l  an hill for every real sequence (am) and all k E N. 

Terms and notation regarding Orlicz spaces are discussed in §2. 

1. A c h a r a c t e r i z a t i o n  t h e o r e m  

This section is devoted to proving the following characterization theorem. Read- 

ers familiar with the proofs of Fonf's Theorems will find the same ingredients 

used here. 

THEOREM 3: Let (e,~) be a shrinking basis of a Banach space (E, ll " II). The 

following are equivalent. 

(a) E is isomorphically polyhedral. 
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(b) There exists an equivalent norm [[[. [[[ on E such that (en) is a monotone 

basis with respect to [][. [[[, and for all ~ a,~e,~ E E, there exists m E N 

such that 
O 0  m 

ItlEaoeolll:lllEooeolll 
n = l  n = l  

Proof'. Let (P~) be the projections on E associated with the basis (en). The  

sequence (Pn) is uniformly bounded with respect to any equivalent norm on E.  

Also, (P~) converges strongly to the identi ty operator  on E,  which we denote by 

1. Since (e , )  is shrinking, (P~) converges to 1' s trongly as well. 

(a) =* (b): By renorming, and using Theorem 2, we may assume tha t  E' con- 

tains a p.n. sequence (wk). Fix sequences (ek) and (~k) in (0, 1) which are bo th  

convergent to 0, and so that  (1 + ek)(1 - 2~k) > 1 for all k. For each k, choose 

nk such tha t  I1(1 - P~)'wkl] <_ ~k for all n > nk. Define a seminorm II1" II] on E 

by 

(1) [][x[][ = sup(1 + ek) max  I(P~x, wk)[. 
k l<n<n~  

Since (wk) C_ UE,, [[[x[[[ _< 2nx[[ sup [[P~[[. On the other  hand, if x ~ 0, choose k 

such tha t  [Ix[t = [wk(x)[. Then  

I l x l l - - l w k ( x ) l  < I(x,F'~wk)l+l(x,(1-Pn~)'w~)l 
< I(Pn~X, wk)l+'Skllxll. 

Thus 

(2) I l lxl l l  > (1 + e~)(1 - ~) l l x l l  > Ilxll . 

Hence III-III is an equivalent norm on E.  It is clear tha t  (e , )  is monotone  with 

respect to I[1" Ill. We claim tha t  this norm satisfies the remaining condit ion in (b). 

To this end, we first show tha t  the supremum in the definition (1) is a t ta ined.  

This is trivial if x = 0. Fix 0 # x E E.  Choose kl < k2 < - . .  and (ji) , 

1 _< j i  _< nk, for all i, so tha t  

IIIx l l l - - l im(1  + ek,)l(Pj, x, wk,)J. 

We divide the proof  into cases. 

CASE 1: limi ki = l imi j i  = c~. In this case, Pj~x ~ x in norm. Therefore  

lim sup [(Pj, z,  wk, )[ = lim sup [(x, wk, )1 < I Ix II. 
i i 

Also, ck, --, 0 as i ~ e¢. Thus,  IIIxlll _< Ilxll, contrary to (2). 
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CASE 2: lin~ kl = co, limi ji  ¢ co. By using a subsequence, we may assume 

that ji  = J for all i. Then 

IIIxlll = l im(1 + e~,)l(Pjx, wk,)l < IIP~xll. 

Now choose k such that I I P j x l l - -  I(P~x, w~)l. If j < n~, 

IIIxlll _> (l +ek)l(Pjx, wk)l 

= (1 + ~k)llPjxll > IIPjxll, 

a contradiction. Now assume j > n~; then 

II(P~ - Pn~)'wkll <_ I1(1 --  P j ) ' w k l l  + I1(1 --  P,~,.) 'wk, II 

_< 26k. 

Hence 

Therefore, 

IIPjxll - I(Pjx, ~k)l 
<_ I(Pn~x, wk)l+ 2~kllxll 

< (1 + ~k)-~lllxlll + 26klllxlll. 

IIIxlll _< IIPjxll _< ((1 + ~k) -~ + 2~k)lllxlll < IIIxlll, 

reaching yet another contradiction. Consequently, we must have 

CASE 3: limi ki ~ co. By using a subsequence, we may assume that  the se- 

quence (kl) is constant. Then it is clear that the supremum in (1) is attained. 

Now for any x E E, choose k so that the supremum in (1) is attained at k. 

Then it is clear that IIIxl[I = IIIP,~xlII. 

(b) ~ (a): Let (Yn) and (e,) be sequences convergent to 0, with I > Yn > en > 0 

for all n. For each n, there is a finite Wn C_ U(E,III.III)' such that 

(3) (1 + ~n)-ll l lxll l  < max Iw(x)l < IIIxlll 
- -  w E W,, .  

for all x E span{e l , . . .  ,en}. Define a seminorm p on E by 

(4) p(x) = sup(1 + ~ , )  max max I<Pjx, w>l. 
n l<j~_n wEWj  
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We will show that  p is an equivalent norm on E, and the set 

W = ((1 + ~?,~)P~w: n • N, 1 <_j <_ n ,w • Wj} 

is a countable p.n. subset of (E, p)l. Then E is isomorphically polyhedral by 

Fonf's Theorem (Theorem 2). Now let x • E. By (b), there exists m such that  

IIIxlll = ]llPmzlll. Hence, by (3), and the fact that (e~) is monotone with respect 

to II1" III, 

IIIxlll = IIIP xlll 
< (1+ max I<P, x,w>l 

(5) < ( l + ~ m )  max [(Pmx, w)l 
- -  w E W ~  

<_ p(x) 

_< 2111x111. 

Thus p is an equivalent norm on E. Next we show that  the supremum in (4) is 

attained. Fix x E E. Choose sequences nl _< n2 _< . . . ,  (jk), and (wk) such that  

1 < jk _< nk, wk E Wn~ for all k, and p(x) = limk(1 + ~?nk)l(Pj~x, wk)l. First 

assume that  limk nk = oo. Then ~ -* 0. Since (e,~) is monotone with respect 

to II1" III, we have p(x) <_ IIIxlll. But there exists k such that  IIIxlll = IIIPkxlll, 

and there is a w E Wk such that  IIIPkxlll < (1 + ek)lw(Pkx)l. Thus 

p(x)>_ (X+,k)[w(Pkx)l>_ 11:e~:l[Ixlll> Inxlll, 

a contradiction. Therefore, lim~ nk ¢ oo. By going to a subsequence, we may 

assume that  (nk) is bounded. Using a further subsequence if necessary, we may 

even assume it is constant. Thus the supremum in (4) is attained. From this it 

readily follows that  the set W is a p.n. subset of (E, p)'. The countability of W 

is evident. | 

Remark: The assumption that  the basis (en) is shrinking is used only in the 

proof of (a) =~ (b). If (en) is assumed to be unconditional and (a) holds, then 

(e,,) must be shrinking. For otherwise E contains a copy of t l ,  which contradicts 

(a) by Fonf's Theorem (Theorem 1). Thus the assumption of shrinking is not 

needed if (e,~) is unconditional. 
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2. Orl icz  s e q u e n c e  s p a c e s  

In this section, we apply Theorem 3 to identify a class of isomorphically polyhe- 

dral Orlicz sequence spaces. Terms and notation about Orlicz sequence spaces 

follow that of [3]. An Orl icz  f u n c t i o n  M is a continuous non-decreasing con- 

vex function defined for t >_ 0 such that  M(0) = 0 and limt--.oo M(t) = oo. If 

M(t) > 0 for all t > 0, then it is n o n - d e g e n e r a t e .  Clearly a non-degenerate 

Orlicz function must be strictly increasing. The Orl icz  s e q u e n c e  s p a c e  ~M 
associated with an Orlicz function M is the space of all sequences (an) such that  

~M( ian i /p )  < c¢ for some p > 0, equipped with the norm 

I[xll = inf{p > 0: E M(lanl/P) < 1}. 

Let en denote the vector whose sole nonzero coordinate is a 1 at the n-th position. 

Then clearly (en) is a basic sequence in eM. The closed linear span of {en} in 

~M is denoted by hM. Alternatively, hM may be described as the set of all 

sequences (an) such that ~ M([a,~[/p) < co for every p > 0. Additional results 

and references on Orlicz spaces may be found in [3]. For a real null sequence 

(an), let (a*) denote the decreasing rearrangement of the sequence (Jan [). 

THEOREM 4: Let M be anon-degenerate Orlicz function such that there exists a 

finite number K satisfying limt--.0 M(Kt ) /M( t )  = oo. Then hM is isomorphically 

polyhedral. 

Proof: For all k E N, let 

bk = inf M(t) : O < t < M -1 . 

Then limk--.oo bk = c¢. Thus there is a sequence (•k) decreasing to 1 such that 

~/k > (1 -1 -1 - -  bk+l) for all k. Define a seminorm on hM by 

(6) Ill(an)Ill = sup ~ k l l ( a ~ , . . . ,  a~, 0, . . . )11,  
k 

where [[. [[ is the given norm on hM. It is clear that [[[. [[[ is an equivalent norm 

on hM, and that  (en) is a monotone basis with respect to [[I. [[[. It suffices to 

show that  I[1" III satisfies the remaining condition in part  (b) of Theorem 3. We 

first show that  if (an) is a positive decreasing sequence in hM, then there is a k 

such that 

(7) ll(an)ll--< ~kll(ax, . . . .  ak, O . . . . .  )11. 
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Assume otherwise. There is no loss of generality in assuming that  II(an)ll = 1. 
k Then ~ M(an) = 1 and ~-~n=l M(rlka,~) _< 1 for all k. In particular, note that  

the second condition implies ak < M-a(1/k) for all k, since ~?k _> 1 and (an) is 

decreasing. Now choose m such that II(O,...,O, am, a,~+l,...)ll < K-1. Then 

~n°°=m M(gan) < 1. Also M(gan) >_ bmM(an) for all n > m. Therefore, 

1 = E M(a,~) 
m--1 

= Z M(an) + M(an) 
n----1 n=m 

m-1 

/]~al-1 Z M(glm- lan)  q- bma M ( K a n )  
n=l  n=m 

< ~7,1_ 1 + b7, ~ 

< 1, 

a contradiction. Hence (7) holds for some k. Now for a general element (an) E 

hM, choose m such that  

II(an)ll = II(a~)ll ___ ~ l l ( a T , . . . ,  a* ,  0,.. .)ll .  

a *  . .  * Note that since limk okll( 1 , . ,  ak, 0,...)11 = II(an)ll, the  s u p r e m u m  in equation 

(6) is attained, say, at j .  Then choose i large enough that  a~ , . . . ,  a~ axe found 

in {]al [ , . . . ,  lad}. With this choice of i, 

I l l ( a1 , . . . ,  a ,  0,. . .)111-> o j l l ( a L . . . ,  ~; ,  0,...)11 = Ill(an)Ill 

by choice of j .  Since the reverse inequality is obvious, 

I I l (~n)l l l  = I l l ( a 1 , - . . , a i ,  O,...)111, 

as required. | 

3. A c o u n t e r e x a m p l e  

THEOREM 5: Let M be a non-degenerate Orlicz function. Suppose there exists 

a sequence (tn) decreasing to 0 such that 

M(Ktn) 
supn M(tn) < c~ 

for o21 K < oo. Then hM is not isomorphically polyhedrM. 
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Proof'. Suppose that hM is isomorphically polyhedral. By Theorem 3 and the 

remark following it, one obtains a norm 11[. [11 on hM as prescribed by part (b) 

of the theorem. Fix a > 0 so that [][x[[[ < a ~ I[x[[ _< 1. Choose a sequence (Ok) 

strictly decreasing to 1. Let nl  = min{n E N: rllll[tnelll[ <_ ~}. If nl  _< n2 <_ 
k 

• . .  E ~ = l t , ~ e s I l l  < a .  < nk are chosen so that 0kill ~ j = l  t ~ e j l l l  ___ a ,  then 0k+llll k 

Hence 
k 

{n > nk: ~lk+llllEtn~e j + trick+ill[ < a} ~ 0. 
j = l  

k 

(8) nk+l = min{n > nk: ~k÷alll ~tn~e5 + tnek÷llll ~ a}. 
5=1 

This inductively defines a (not necessarily strictly) increasing sequence (nk) sat- 

isfying 
k 

(9) 0kill ~ t~eSIII < a 
5=1 

for all k and the minimality condition (8). In particular, for all k, I II ~_-1 tnj esIII 
< a, so II k ~5=1 tnjesII -< 1 by the choice of a. Therefore )-']~k=l M(tni) < 1 for all 

k. For all K < oo and all k E N, 

k M(Ktm) k M(Ktm) 
E M(t . j )  <_ sup M(tm) " E g(Ktnj ) ~ s u p  M ( t m )  5___ 1 j = l  ra m 

O 0  
Consequently, ~.=xM(Ktn~)  < c~ for all K < c~. Hence x = ~5=ltn~ej 

converges in hM. Clearly [[[x[[[ limk [[[ k = )--~.5=ltnjej[[[ < a. We claim that  in 

fact  IIIxlll = a .  Otherwise, suppose IIIxlll = ~ < a. Since (en) is monotone with 

respect to II1" III, III E~_-I t,~esIII _< ~ < a for all k. By the convergence of x, 
limj tn~ = 0. So one can find i such that IIIt~,e~lll ___ a - ~ for all j .  Then 

i i 

Ill ~ t ~ j e j  + t~,e~+llll < Ill ~ t , j e j l l l  + IIItn, e~+llll <- ~ +  a - ~ = ~. 
j = l  j = l  

By the minimality condition (8), ni+l = ni. Similarly, we see that  nj = ni for all 

j > i. This contradicts the convergence of x and proves the claim. But now, by 

(9), III E~_- ,  t,~esIII < a = IIIxlll for all k, contradicting the choice of the norm 

II1"111. m 

Now define 
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We now construct an Orlicz function M satisfying Theorem 5 while hM 

is Co-saturated. We begin with some simple results which help to identify the 

c0-saturated Orlicz sequence spaces. 

PROPOSITION 6: Let M be a non-degenerate Orlicz function. Then the following 

are equivalent. 

(a) h g  is co-saturated; 

(b) hM does not contain an isomorph of ~ p for any I <_ p < c~; 

(c) for all q < oc, 
M(At)  

sup - -  < co. 
0<:~,t<l M(A)tq 

Proo~ Clearly (a) implies (b). If (a) fails, let Y be an infinite dimensional 

closed subspace of h u  which contains no isomorph of co. By [3, Proposition 

4.a.7], Y has a subspace Z isomorphic to some Orlicz sequence space hN. Then 

hN contains no isomorph of Co. By [3, Theorem 4.a.9], hN contains an isomorph 

of some ~v, 1 < p < oo. Hence Y contains a copy o f t  p, and (b) fails. The 

equivalence of (b) and (c) also follows from [3, Theorem 4.a.9]. | 

b o o  PROPOSITION 7: Let ( n)n=o be a decreasing sequence of strictly positive num- 

bers such that 

sup - ~ K  TM < co for all K < oo. 
m , t t  un 

Define M to be the continuous, piecewise linear function such that M(O) = O, 

bn if 2 -n-1 < t < 2 - n ,  n > 0, 
M'( t )  = bo if  2 -1 < t. 

Then the Orliez sequence space h g  is Co-saturated. 

Proo~ It is clear that  M is a non-degenerate Orlicz function. For all n _> 0, 

2-'~-1b,~ <_ M(2 -'~) _< 2-'~bn. Hence 

M(2 -m-n)  _ 
Cq = sup M(2_n) "2 "w _< 2sup (2q-1) TM < oo 

m ~ n  ~q~n n 

for any q < c~. Now if A, t E (0, 1], choose m, n _> 1 such that t E (2 - '~, 2-m+1], 

A E (2 -'~, 2-n+1]. Then At E (2 -m-n ,  2-m-n+2]. If m >_ 2, then 

M(At) M(2-('~-2)-'~) 2(,~-2)q _< 4qCq. 
M(A)tq <- 22q M ( 2 - ' )  
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If  m = 1, then t > 2 -1.  Therefore 

M(~t)  < t -  q <_ 2q" 
M ( )~ )tq - 

Thus 
M()~t) 

sup 
O<,~,t< 1 M(A)tq 

~ ~ c o ,  

and hM is Co-saturated by the previous proposition. II 

THEOREM 8: There exists an Orlicz function M such that hM is Co-saturated 

but not isomorphically polyhedral. In particular, a Co-saturated space with a 

separable dual is not  necessarily isomorphically polyhedral. 

Proof: I t  is well known tha t  every co-saturated space hM has a separable dual. 

Thus  the second s ta tement  follows from the first. Let So = ax = a s  = 1, and let 

aj = (e/j)J for j >_ 3. Then  (a j )  is a decreasing sequence. Choose a decreasing 

sequence (cj)~°=o of str ict ly positive numbers  such tha t  Cj+l < aja2j2cj for all 
n 

j > 0. For convenience, set sn = ~ j = l  J for all n > 1. Now define b0 = co, 

bl = Cl, and b,~+k = Cn+l/a,~+l-k whenever n > 1 and 1 < k < n + 1. We first 

show tha t  the sequence (bj) satisfies the conditions in Proposi t ion 7. 

CLAIM 1: (bj) is a decreasing sequence. 

One verifies directly tha t  bo _> bl > b2. If  n _ 1 and 1 < k < j < n + 1, 

bs.+k - Cn+l ~ Cn+l ~ bs.+j 
Otnq-l-k Otn+l-j 

since (am) is decreasing. Finally, 

bs,,+a+l -- Cn+2 ~ O12(n+l) 2cn+l ~ Cn+l = bs .+n+l  
Otn+l 

for all n _> 1. This proves Claim 1. 

CLAIM 2: bm+n <_ ~mb,~ for all m >_ 0, n >_ 2. 

Express n = s i + k ,  m + n  = sj + l ,  where 1 < i < j ,  1 < k < i + 1 ,  and 

1 < I < j + l .  I f / =  j ,  then l - k  = m. Moreover, i + l - k  > m a x { l - k , i + l - l } ,  

from which it follows tha t  ~ i + l - k  _< (~t-k(~i+l-l. Therefore, 

brn+n - -  Ci-{-1 ~ ~rn Ci+_____..~l = ~rnbn. 
o~i+l-I ~i+l--k 
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Now consider the possibility that j > i. Note first that  

m = ( r e + n )  - n <_ sj + j  + 1 -  (si + 1) < sj + j  < 2j 2. 

Using Claim 1 and the properties of the sequence (cj), we Hence am >_ a2j2. 

obtain 

bm+n 
Cj+l 

<_ bs~+l = 
oLj 

_< a2~2c~ _< amC~+l 

: Otrnbsi+i+l <~ otmbn. 

CLAIM 3: 
k 

s u p ~ K  m < o c  for a l l K < c ~ .  
( 1 .  

First observe that  for i >_ 1, 1 < k < i + 1, and K < cx), 

bs~+kgs~+k _ Ci+l KS~+k <_ Ol2i2cigSi+i+l 
C~i+l-k 

cOot2izK slq-i+l ~ 0 

as i ~ c~. Hence (bmKm),~ is bounded. Therefore 

sup sup bm+?%Km/b?% < cx). 
n=l,2 m 

On the other hand, using Claim 2, 

supsup ~ - - ~ K  m _< supa ,~K m < c~ 
n~_2 m O 7 %  m 

by direct verification. 

Define the function M using the sequence (bj) as in Proposition 7. Using 

Claims 1 and 3, and the proposition, we see that  hM is c0-saturated. To complete 

the proof, it suffices to find a sequence (t?%) as in Theorem 5. We claim that  the 

sequence (t?%) = (2 -*~) will do. Clearly (tn) decrease to 0. Fix m e N. For all 

/ t ) m ,  

bs~-m = bs._z+(?%-m ) - c7% 
Olm 

Hence 

M(2mt?%) = M(2- ' -+m)  _< 
b 8 n - - T R  

8 n - - T n  

Cn 2 m+l Cn 

O~m2 s n - m  O~m 2 s'~+l 

2 m + l  bs,~ 2 m + l  

- a m  2 , ~ + 1  < --M(t,dam 
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whenever n > m. Therefore, 

M(2mtn) 
sup~ M(tn)  < oo 

for all m E N. | 

The obvious question to be raised is how to characterize isomorphically 

polyhedral hM in terms of the Orlicz function M. We suspect that the condition 

given in Theorem 4 is the correct one. It can be shown that  if 

l i m i n f M ( K t ) / M ( t )  < c~ for all K < c~, 
t ---*0 

then for any sequence (~k) decreasing to 1, the norm given by equation (6) does 

not satisfy part (b) of Theorem 3. 
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