SOME ISOMORPHICALLY POLYHEDRAL ORLICZ SEQUENCE SPACES

BY

DENNY H. LEUNG

Department of Mathematics, National University of Singapore, Singapore 0511 e-mail(bitnet) : maflhh@nusvrn

ABSTRACT

A Banach space is polyhedral if the unit ball of each of its finite dimensional subspaces is a polyhedron. It is known that a polyhedral Banach space has a separable dual and is co-saturated, i.e., each closed infinite dimensional subspace contains an isomorph of c_0 . In this paper, we show that the Orlicz sequence space h_M is isomorphic to a polyhedral Banach space if $\lim_{t\to 0} M(Kt)/M(t) = \infty$ for some $K < \infty$. We also construct an Orlicz sequence space h_M which is c₀-saturated, but which is not isomorphic to any polyhedral Banach space. This shows that being co-saturated and having a separable dual are not sufficient for a Banach space to be isomorphic to a polyhedral Banach space.

A Banach space is said to be polyhedral if the unit ball of each of its finite dimensional subspaces is a polyhedron. It is isomorphically polyhedral if it is isomorphic to a polyhedral Banach space. Fundamental results concerning polyhedral Banach spaces were obtained by Fonf [1, 2].

THEOREM 1 (Fonf): *A separable isomorphically polyhedral Banach space is co-saturated and has a separable dual.*

Recall that a Banach space is c_0 -saturated, if every closed infinite dimensional subspace contains an isomorph of c_0 . Fonf also proved a characterization of isomorphically polyhedral spaces in terms of certain norming subsets in the dual. In order to state the relevant results, we introduce some terminology due to Rosenthal [4, 5]. The (closed) unit ball of a Banach space E is denoted by U_E .

Received April 13, 1993

Definition: Let E be a Banach space.

- (1) A subset $W \subseteq E'$ is precisely norming (p.n.) if $W \subseteq U_{E'}$, and for all $x \in E$, there is a $w \in W$ such that $||x|| = |w(x)|$.
- (2) A subset $W \subseteq E'$ is isomorphically precisely norming (i.p.n.) if W is bounded and
	- (a) there exists $K < \infty$ such that $||x|| \leq K \sup_{w \in W} |w(x)|$ for all $x \in E$,
	- (b) the supremum $\sup_{w \in W} |w(x)|$ is attained at some $w_0 \in W$ for all $x \in E$.

It is easy to see that $W \subseteq E'$ is i.p.n. if and only if there is an equivalent norm $|||\cdot|||$ on E so that W is p.n. in $(E,|||\cdot|||)'$.

THEOREM 2 (Fonf): *Let E be a separable Banach* space. *Then E is isomor*phically polyhedral if and only if E' contains a countable i.p.n. subset.

This paper is devoted mainly to the problem of identifying the isomorphically polyhedral Orlicz sequence spaces. In §1, a characterization theorem for isomorphically polyhedral Banach spaces having a shrinking basis is proved. This result is applied in §2 to obtain examples of isomorphically polyhedral Orlicz spaces. In §3, a non-isomorphically polyhedral, c_0 -saturated Orlicz sequence space is constructed. Since every c_0 -saturated Orlicz sequence space has a separable dual, this shows that the converse of Theorem 1 fails, answering a question posed by Rosenthal [4].

Standard Banach space terminology, as may be found in [3], is employed. If (e_n) is a basis of a Banach space E, and $|||\cdot|||$ is a norm on E equivalent to the given norm, we say that (e_n) is monotone with respect to $|||\cdot|||$ if $\| \sum_{n=1}^k a_n e_n \| \leq \| \sum_{n=1}^{k+1} a_n e_n \|$ for every real sequence (a_n) and all $k \in \mathbb{N}$. Terms and notation regarding Orlicz spaces are discussed in §2.

1. A characterization theorem

This section is devoted to proving the following characterization theorem. Readers familiar with the proofs of Fonf's Theorems will find the same ingredients used here.

THEOREM 3: Let (e_n) be a shrinking basis of a Banach space $(E, \|\cdot\|)$. The *following* are *equivalent.*

(a) *E is isomorphically polyhedral.*

(b) There exists an equivalent norm $\|\cdot\|$ on E such that (e_n) is a monotone *basis with respect to* $|||\cdot|||$ *, and for all* $\sum a_n e_n \in E$ *, there exists m* $\in \mathbb{N}$ *such that*

$$
|||\sum_{n=1}^{\infty} a_n e_n||| = |||\sum_{n=1}^{m} a_n e_n|||.
$$

Proof: Let (P_n) be the projections on E associated with the basis (e_n) . The sequence (P_n) is uniformly bounded with respect to any equivalent norm on E. Also, (P_n) converges strongly to the identity operator on E, which we denote by 1. Since (e_n) is shrinking, (P'_n) converges to 1' strongly as well.

(a) \Rightarrow (b): By renorming, and using Theorem 2, we may assume that *E'* contains a p.n. sequence (w_k) . Fix sequences (ϵ_k) and (δ_k) in $(0, 1)$ which are both convergent to 0, and so that $(1 + \epsilon_k)(1 - 2\delta_k) > 1$ for all k. For each k, choose n_k such that $||(1 - P_n)'w_k|| \leq \delta_k$ for all $n \geq n_k$. Define a seminorm $||| \cdot |||$ on E by

(1)
$$
|||x||| = \sup_{k} (1 + \epsilon_{k}) \max_{1 \leq n \leq n_{k}} |\langle P_{n} x, w_{k} \rangle|.
$$

Since $(w_k) \subseteq U_{E'}$, $|||x||| \leq 2||x|| \sup ||P_n||$. On the other hand, if $x \neq 0$, choose k such that $||x|| = |w_k(x)|$. Then

$$
||x|| = |w_k(x)| \leq |\langle x, P'_{n_k} w_k \rangle| + |\langle x, (1 - P_{n_k})' w_k \rangle|
$$

$$
\leq |\langle P_{n_k} x, w_k \rangle| + \delta_k ||x||.
$$

Thus

(2)
$$
|||x||| \ge (1 + \epsilon_k)(1 - \delta_k) ||x|| > ||x||.
$$

Hence $\|\cdot\|$ is an equivalent norm on E. It is clear that (e_n) is monotone with respect to $\|\cdot\|$. We claim that this norm satisfies the remaining condition in (b). To this end, we first show that the supremum in the definition (1) is attained. This is trivial if $x = 0$. Fix $0 \neq x \in E$. Choose $k_1 \leq k_2 \leq \cdots$ and (j_i) , $1 \leq j_i \leq n_{k_i}$ for all *i*, so that

$$
|||x||| = \lim_{i} (1 + \epsilon_{k_i}) |\langle P_{j_i} x, w_{k_i} \rangle|.
$$

We divide the proof into cases.

CASE 1: $\lim_{i} k_i = \lim_{i} j_i = \infty$. In this case, $P_{j_i} x \to x$ in norm. Therefore

$$
\limsup_{i} |\langle P_{j_i} x, w_{k_i} \rangle| = \limsup_{i} |\langle x, w_{k_i} \rangle| \leq ||x||.
$$

Also, $\epsilon_{k_i} \to 0$ as $i \to \infty$. Thus, $|||x||| \le ||x||$, contrary **to** (2).

CASE 2: $\lim_{i} k_i = \infty$, $\lim_{i} j_i \neq \infty$. By using a subsequence, we may assume that $j_i = j$ for all i. Then

$$
|||x||| = \lim_{i} (1 + \epsilon_{k_i}) |\langle P_j x, w_{k_i} \rangle| \leq ||P_j x||.
$$

Now choose k such that $||P_jx|| = |\langle P_jx, w_k \rangle|$. If $j \leq n_k$,

$$
|||x||| \geq (1+\epsilon_k)|\langle P_jx, w_k \rangle|
$$

=
$$
(1+\epsilon_k)||P_jx|| > ||P_jx||,
$$

a contradiction. Now assume $j > n_k$; then

$$
||(P_j - P_{n_k})' w_k|| \le ||(1 - P_j)' w_k|| + ||(1 - P_{n_k})' w_k||
$$

$$
\le 2\delta_k.
$$

Hence

$$
\|P_j x\| = |\langle P_j x, w_k \rangle|
$$

\n
$$
\leq |\langle P_{n_k} x, w_k \rangle| + 2\delta_k \|x\|
$$

\n
$$
\leq (1 + \epsilon_k)^{-1} ||x|| + 2\delta_k ||x||.
$$

Therefore,

$$
|||x||| \leq ||P_j x|| \leq ((1+\epsilon_k)^{-1} + 2\delta_k)|||x||| < |||x|||,
$$

reaching yet another contradiction. Consequently, we must have

CASE 3: $\lim_{k \to \infty} k_i \neq \infty$. By using a subsequence, we may assume that the sequence (k_i) is constant. Then it is clear that the supremum in (1) is attained.

Now for any $x \in E$, choose k so that the supremum in (1) is attained at k. Then it is clear that $|||x||| = |||P_{n_k}x|||$.

(b) \Rightarrow (a): Let (η_n) and (ϵ_n) be sequences convergent to 0, with $1 > \eta_n > \epsilon_n > 0$ for all *n*. For each *n*, there is a finite $W_n \subseteq U_{(E,|||\cdot|||)'}$ such that

(3)
$$
(1+\epsilon_n)^{-1}|||x||| \leq \max_{w \in W_n} |w(x)| \leq |||x|||
$$

for all $x \in \text{span}\{e_1, \ldots, e_n\}$. Define a seminorm ρ on E by

(4)
$$
\rho(x) = \sup_n(1 + \eta_n) \max_{1 \leq j \leq n} \max_{w \in W_j} |\langle P_j x, w \rangle|.
$$

We will show that ρ is an equivalent norm on E, and the set

$$
W = \{(1 + \eta_n)P'_j w : n \in \mathbb{N}, 1 \le j \le n, w \in W_j\}
$$

is a countable p.n. subset of (E, ρ) . Then E is isomorphically polyhedral by Fonf's Theorem (Theorem 2). Now let $x \in E$. By (b), there exists m such that $|||x||| = |||P_mx|||$. Hence, by (3), and the fact that (e_n) is monotone with respect \mathbf{t} **o** $\vert\vert\vert \cdot \vert\vert\vert$,

$$
|||x||| = |||P_m x|||
$$

\n
$$
\leq (1 + \epsilon_m) \max_{w \in W_m} |\langle P_m x, w \rangle|
$$

\n
$$
\leq (1 + \eta_m) \max_{w \in W_m} |\langle P_m x, w \rangle|
$$

\n
$$
\leq \rho(x)
$$

\n
$$
\leq 2|||x|||.
$$

Thus ρ is an equivalent norm on E. Next we show that the supremum in (4) is attained. Fix $x \in E$. Choose sequences $n_1 \leq n_2 \leq \cdots$, (j_k) , and (w_k) such that $1 \leq j_k \leq n_k$, $w_k \in W_{n_k}$ for all k, and $\rho(x) = \lim_k(1 + \eta_{n_k}) |\langle P_{j_k} x, w_k \rangle|$. First assume that $\lim_{k} n_k = \infty$. Then $\eta_{n_k} \to 0$. Since (e_n) is monotone with respect to $|||\cdot|||$, we have $\rho(x) \leq |||x|||$. But there exists k such that $|||x||| = |||P_kx|||$, and there is a $w \in W_k$ such that $|||P_kx||| \leq (1 + \epsilon_k)|w(P_kx)|$. Thus

$$
\rho(x) \ge (1 + \eta_k)|w(P_k x)| \ge \frac{1 + \eta_k}{1 + \epsilon_k}|||x||| > |||x|||,
$$

a contradiction. Therefore, $\lim_{k} n_k \neq \infty$. By going to a subsequence, we may assume that (n_k) is bounded. Using a further subsequence if necessary, we may even assume it is constant. Thus the supremum in (4) is attained. From this it readily follows that the set W is a p.n. subset of $(E, \rho)'$. The countability of W is evident.

Remark: The assumption that the basis (e_n) is shrinking is used only in the proof of (a) \Rightarrow (b). If (e_n) is assumed to be unconditional and (a) holds, then (e_n) must be shrinking. For otherwise E contains a copy of ℓ^1 , which contradicts (a) by Fonf's Theorem (Theorem 1). Thus the assumption of shrinking is not needed if (e_n) is unconditional.

2. Orlicz **sequence spaces**

In this section, we apply Theorem 3 to identify a class of isomorphically polyhedral Orlicz sequence spaces. Terms and notation about Orlicz sequence spaces follow that of $[3]$. An Orlicz function M is a continuous non-decreasing convex function defined for $t \geq 0$ such that $M(0) = 0$ and $\lim_{t \to \infty} M(t) = \infty$. If $M(t) > 0$ for all $t > 0$, then it is non-degenerate. Clearly a non-degenerate Orlicz function must be strictly increasing. The **Orlicz sequence space** ℓ_M associated with an Orlicz function M is the space of all sequences (a_n) such that $\sum M(|a_n|/\rho) < \infty$ for some $\rho > 0$, equipped with the norm

$$
||x|| = \inf{\rho > 0: \sum M(|a_n|/\rho) \le 1}.
$$

Let e_n denote the vector whose sole nonzero coordinate is a 1 at the *n*-th position. Then clearly (e_n) is a basic sequence in ℓ_M . The closed linear span of $\{e_n\}$ in ℓ_M is denoted by h_M . Alternatively, h_M may be described as the set of all sequences (a_n) such that $\sum M(|a_n|/\rho) < \infty$ for every $\rho > 0$. Additional results and references on Orlicz spaces may be found in [3]. For a real null sequence (a_n) , let (a_n^*) denote the decreasing rearrangement of the sequence $(|a_n|)$.

THEOREM 4: *Let M be anon-degenerate Orlicz function such that* there exists a *finite number K satisfying* $\lim_{t\to 0} M(Kt)/M(t) = \infty$. Then h_M is isomorphically *polyhedral.*

Proof: For all $k \in \mathbb{N}$, let

$$
b_k = \inf \left\{ \frac{M(Kt)}{M(t)} : 0 < t \le M^{-1} \left(\frac{1}{k} \right) \right\}.
$$

Then $\lim_{k\to\infty} b_k = \infty$. Thus there is a sequence (η_k) decreasing to 1 such that $\eta_k > (1 - b_{k+1}^{-1})^{-1}$ for all k. Define a seminorm on h_M by

(6)
$$
|||(a_n)||| = \sup_k \eta_k ||(a_1^*, \ldots, a_k^*, 0, \ldots)||,
$$

where $\|\cdot\|$ is the given norm on h_M . It is clear that $|||\cdot|||$ is an equivalent norm on h_M , and that (e_n) is a monotone basis with respect to $|||\cdot|||$. It suffices to show that $|||\cdot|||$ satisfies the remaining condition in part (b) of Theorem 3. We first show that if (a_n) is a positive decreasing sequence in h_M , then there is a k such that

(7)
$$
||(a_n)|| \leq \eta_k||(a_1,\ldots,a_k,0,\ldots)||.
$$

Assume otherwise. There is no loss of generality in assuming that $||(a_n)|| = 1$. Then $\sum M(a_n) = 1$ and $\sum_{n=1}^{k} M(\eta_k a_n) \leq 1$ for all k. In particular, note that the second condition implies $a_k \leq M^{-1}(1/k)$ for all k, since $\eta_k \geq 1$ and (a_n) is decreasing. Now choose m such that $||(0,\ldots,0,a_m,a_{m+1},\ldots)|| \leq K^{-1}$. Then $\sum_{n=m}^{\infty} M(Ka_n) \leq 1$. Also $M(Ka_n) \geq b_m M(a_n)$ for all $n \geq m$. Therefore,

$$
1 = \sum_{m=1}^{m-1} M(a_n)
$$

= $\sum_{n=1}^{m-1} M(a_n) + \sum_{n=m}^{\infty} M(a_n)$
 $\leq \eta_{m-1}^{-1} \sum_{n=1}^{m-1} M(\eta_{m-1}a_n) + b_m^{-1} \sum_{n=m}^{\infty} M(Ka_n)$
 $\leq \eta_{m-1}^{-1} + b_m^{-1}$
 $< 1,$

a contradiction. Hence (7) holds for some k. Now for a general element $(a_n) \in$ h_M , choose m such that

$$
||(a_n)|| = ||(a_n^*)|| \leq \eta_m ||(a_1^*, \ldots, a_m^*, 0, \ldots)||.
$$

Note that since $\lim_k \eta_k ||(a_1^*, \ldots, a_k^*, 0, \ldots)|| = ||(a_n)||$, the supremum in equation (6) is attained, say, at j. Then choose i large enough that a_1^*, \ldots, a_j^* are found in $\{|a_1|, \ldots, |a_i|\}$. With this choice of i,

 $||||(a_1,..., a_i, 0,...)||| \geq \eta_i||(a_1^*,..., a_i^*, 0,...)|| = |||(a_n)|||$

by choice of j . Since the reverse inequality is obvious,

 $|||(a_n)||| = |||(a_1,\ldots,a_i, 0,\ldots)|||,$

as required. \Box

3. A counterexample

THEOREM 5: *Let M be a non-degenerate Orlicz function. Suppose* there *exists a sequence (tn) decreasing to 0 such that*

$$
\sup_n \frac{M(Kt_n)}{M(t_n)} < \infty
$$

for all $K < \infty$. Then h_M is not isomorphically polyhedral.

Proof: Suppose that h_M is isomorphically polyhedral. By Theorem 3 and the remark following it, one obtains a norm $\|\cdot\|$ on h_M as prescribed by part (b) of the theorem. Fix $\alpha > 0$ so that $|||x||| \leq \alpha \Rightarrow ||x|| \leq 1$. Choose a sequence (η_k) strictly decreasing to 1. Let $n_1 = \min\{n \in \mathbb{N} : \eta_1 || |t_n e_1|| \leq \alpha\}$. If $n_1 \leq n_2 \leq$ $\cdots\leq n_k \text{ are chosen so that } \eta_k|||\sum_{j=1}^k t_{n_j}e_j|||\leq \alpha, \text{ then } \eta_{k+1}|||\sum_{j=1}^k t_{n_j}e_j|||<\alpha.$ Hence

$$
\{n \ge n_k: \eta_{k+1}|||\sum_{j=1}^k t_{n_j}e_j + t_ne_{k+1}||| \le \alpha\} \neq \emptyset.
$$

Now define

(8)
$$
n_{k+1} = \min\{n \geq n_k: \eta_{k+1} \mid ||\sum_{j=1}^k t_{n_j} e_j + t_n e_{k+1} ||| \leq \alpha\}.
$$

This inductively defines a (not necessarily strictly) increasing sequence (n_k) satisfying

(9)
$$
\eta_k|||\sum_{j=1}^k t_{n_j}e_j||| \leq \alpha
$$

for all k and the minimality condition (8). In particular, for all k, $\left|\left|\left|\sum_{j=1}^k t_{n_j} e_j\right|\right|\right|$ $\leq \alpha$, so $\|\sum_{j=1}^k t_{n_j} e_j\| \leq 1$ by the choice of α . Therefore $\sum_{j=1}^k M(t_{n_j}) \leq 1$ for all k. For all $K < \infty$ and all $k \in \mathbb{N}$,

$$
\sum_{j=1}^{k} M(Kt_{n_j}) \leq \sup_m \frac{M(Kt_m)}{M(t_m)} \sum_{j=1}^{k} M(t_{n_j}) \leq \sup_m \frac{M(Kt_m)}{M(t_m)}.
$$

Consequently, $\sum_{j=1}^{\infty}M(Kt_{n_j}) < \infty$ for all $K < \infty$. Hence $x = \sum_{j=1}^{\infty}t_{n_j}e_j$ converges in h_M . Clearly $|||x||| = \lim_k ||| \sum_{j=1}^k t_{n_j} e_j ||| \leq \alpha$. We claim that in fact $|||x||| = \alpha$. Otherwise, suppose $|||x||| = \beta < \alpha$. Since (e_n) is monotone with respect to $|||\cdot|||$, $|||\sum_{j=1}^k t_{n_j} e_j||| \leq \beta < \alpha$ for all k. By the convergence of x, $\lim_{i \to i} t_{n_i} = 0$. So one can find i such that $|||t_{n_i}e_j||| \leq \alpha - \beta$ for all j. Then

$$
|||\sum_{j=1}^i t_{n_j} e_j + t_{n_i} e_{i+1}||| \le |||\sum_{j=1}^i t_{n_j} e_j||| + |||t_{n_i} e_{i+1}||| \le \beta + \alpha - \beta = \alpha.
$$

By the minimality condition (8), $n_{i+1} = n_i$. Similarly, we see that $n_j = n_i$ for all $j \geq i$. This contradicts the convergence of x and proves the claim. But now, by (9), $\|\sum_{j=1}^k t_{n_j} e_j\|\| < \alpha = \|\|x\|\|$ for all k, contradicting the choice of the norm II1"111. **m**

We now construct an Orlicz function M satisfying Theorem 5 while h_M is c_0 -saturated. We begin with some simple results which help to identify the c_0 -saturated Orlicz sequence spaces.

PROPOSITION 6: *Let M be a non-degenerate Orlicz function. Then the following are equivalent.*

- (a) h_M is c₀-saturated;
- (b) h_M does not contain an isomorph of ℓ^p for any $1 \leq p < \infty$;
- (c) for all $q < \infty$,

$$
\sup_{0<\lambda,t\leq 1}\frac{M(\lambda t)}{M(\lambda)t^{q}}<\infty.
$$

Proof: Clearly (a) implies (b). If (a) fails, let Y be an infinite dimensional closed subspace of h_M which contains no isomorph of c_0 . By [3, Proposition 4.a.7], Y has a subspace Z isomorphic to some Orlicz sequence space h_N . Then h_N contains no isomorph of c_0 . By [3, Theorem 4.a.9], h_N contains an isomorph of some $\ell^p, 1 \leq p < \infty$. Hence Y contains a copy of ℓ^p , and (b) fails. The equivalence of (b) and (c) also follows from $[3,$ Theorem 4.a.9].

PROPOSITION 7: Let $(b_n)_{n=0}^{\infty}$ be a decreasing sequence of strictly positive num*bers such that*

$$
\sup_{m,n} \frac{b_{m+n}}{b_n} K^m < \infty \quad \text{for all } K < \infty.
$$

Define M to be the continuous, piecewise linear function such that $M(0) = 0$,

$$
M'(t) = \begin{cases} b_n & \text{if } 2^{-n-1} < t < 2^{-n}, \quad n > 0, \\ b_0 & \text{if } 2^{-1} < t. \end{cases}
$$

Then the Orlicz sequence space h_M is c_0 -saturated.

Proof: It is clear that M is a non-degenerate Orlicz function. For all $n \geq 0$, $2^{-n-1}b_n \leq M(2^{-n}) \leq 2^{-n}b_n$. Hence

$$
C_q \equiv \sup_{m,n} \frac{M(2^{-m-n})}{M(2^{-n})} 2^{mq} \le 2 \sup_{m,n} \frac{b_{m+n}}{b_n} (2^{q-1})^m < \infty
$$

for any $q < \infty$. Now if $\lambda, t \in (0, 1]$, choose $m, n \ge 1$ such that $t \in (2^{-m}, 2^{-m+1}]$, $\lambda \in (2^{-n}, 2^{-n+1}]$. Then $\lambda t \in (2^{-m-n}, 2^{-m-n+2}]$. If $m \ge 2$, then

$$
\frac{M(\lambda t)}{M(\lambda)t^q} \le 2^{2q} \frac{M(2^{-(m-2)-n})}{M(2^{-n})} 2^{(m-2)q} \le 4^qC_q.
$$

If $m = 1$, then $t > 2^{-1}$. Therefore

$$
\frac{M(\lambda t)}{M(\lambda)t^q} \leq t^{-q} \leq 2^q.
$$

Thus

$$
\sup_{0<\lambda,t\leq 1}\frac{M(\lambda t)}{M(\lambda)t^{q}}<\infty,
$$

and h_M is c_0 -saturated by the previous proposition. \Box

THEOREM 8: There exists an Orlicz function M such that h_M is c_0 -saturated *but not isomorphically polyhedral. In particular, a c₀-saturated space with a separable dual is* not *necessarily isomorphically polyhedral.*

Proof: It is well known that every c_0 -saturated space h_M has a separable dual. Thus the second statement follows from the first. Let $\alpha_0 = \alpha_1 = \alpha_2 = 1$, and let $\alpha_j = (e/j)^j$ for $j \geq 3$. Then (α_j) is a decreasing sequence. Choose a decreasing sequence $(c_j)_{j=0}^{\infty}$ of strictly positive numbers such that $c_{j+1} \leq \alpha_j \alpha_{2j^2} c_j$ for all $j \geq 0$. For convenience, set $s_n = \sum_{j=1}^n j$ for all $n \geq 1$. Now define $b_0 = c_0$, $b_1 = c_1$, and $b_{s_n+k} = c_{n+1}/\alpha_{n+1-k}$ whenever $n \geq 1$ and $1 \leq k \leq n+1$. We first show that the sequence (b_i) satisfies the conditions in Proposition 7.

CLAIM 1: (b_i) is a decreasing sequence. One verifies directly that $b_0 \ge b_1 \ge b_2$. If $n \ge 1$ and $1 \le k \le j \le n + 1$,

$$
b_{s_n+k} = \frac{c_{n+1}}{\alpha_{n+1-k}} \ge \frac{c_{n+1}}{\alpha_{n+1-j}} = b_{s_n+j}
$$

since (α_m) is decreasing. Finally,

$$
b_{s_{n+1}+1} = \frac{c_{n+2}}{\alpha_{n+1}} \le \alpha_{2(n+1)^2} c_{n+1} \le c_{n+1} = b_{s_n+n+1}
$$

for all $n \geq 1$. This proves Claim 1.

CLAIM 2: $b_{m+n} \le \alpha_m b_n$ for all $m \ge 0, n \ge 2$. Express $n = s_i + k$, $m + n = s_j + l$, where $1 \leq i \leq j$, $1 \leq k \leq i + 1$, and $1 \leq l \leq j+1$. If $i = j$, then $l-k = m$. Moreover, $i+1-k \geq \max\{l-k, i+1-l\}$, from which it follows that $\alpha_{i+1-k} \leq \alpha_{i-k}\alpha_{i+1-l}$. Therefore,

$$
b_{m+n}=\frac{c_{i+1}}{\alpha_{i+1-i}}\leq \alpha_m\frac{c_{i+1}}{\alpha_{i+1-k}}=\alpha_m b_n.
$$

Now consider the possibility that $j > i$. Note first that

$$
m = (m+n) - n \leq s_j + j + 1 - (s_i + 1) \leq s_j + j \leq 2j^2.
$$

Hence $\alpha_m \geq \alpha_{2j^2}$. Using Claim 1 and the properties of the sequence (c_j) , we obtain

$$
b_{m+n} \leq b_{s_j+1} = \frac{c_{j+1}}{\alpha_j}
$$

\n
$$
\leq \alpha_{2j} c_j \leq \alpha_m c_{i+1}
$$

\n
$$
= \alpha_m b_{s_i+i+1} \leq \alpha_m b_n.
$$

CLAIM 3:

$$
\sup_{m,n} \frac{b_{m+n}}{b_n} K^m < \infty \quad \text{for all } K < \infty.
$$

First observe that for $i \geq 1, 1 \leq k \leq i + 1$, and $K < \infty$,

$$
b_{s_i+k}K^{s_i+k} = \frac{c_{i+1}}{\alpha_{i+1-k}}K^{s_i+k} \leq \alpha_{2i^2}c_iK^{s_i+i+1}
$$

$$
\leq c_0\alpha_{2i^2}K^{s_i+i+1} \to 0
$$

as $i \to \infty$. Hence $(b_m K^m)_m$ is bounded. Therefore

$$
\sup_{n=1,2}\sup_m b_{m+n}K^m/b_n<\infty.
$$

On the other hand, using Claim 2,

$$
\sup_{n\geq 2} \sup_{m} \frac{b_{m+n}}{b_n} K^m \leq \sup_{m} \alpha_m K^m < \infty
$$

by direct verification.

Define the function M using the sequence (b_j) as in Proposition 7. Using Claims 1 and 3, and the proposition, we see that h_M is c_0 -saturated. To complete the proof, it suffices to find a sequence (t_n) as in Theorem 5. We claim that the sequence $(t_n) = (2^{-s_n})$ will do. Clearly (t_n) decrease to 0. Fix $m \in \mathbb{N}$. For all $n>m,$

$$
b_{s_n-m}=b_{s_{n-1}+(n-m)}=\frac{c_n}{\alpha_m}.
$$

Hence

$$
M(2^{m}t_{n}) = M(2^{-s_{n}+m}) \leq \frac{b_{s_{n}-m}}{2^{s_{n}-m}}
$$

= $\frac{c_{n}}{\alpha_{m}2^{s_{n}-m}} = \frac{2^{m+1}}{\alpha_{m}}\frac{c_{n}}{2^{s_{n}+1}}$
= $\frac{2^{m+1}}{\alpha_{m}}\frac{b_{s_{n}}}{2^{s_{n}+1}} \leq \frac{2^{m+1}}{\alpha_{m}}M(t_{n})$

whenever $n > m$. Therefore,

$$
\sup_n \frac{M(2^m t_n)}{M(t_n)} < \infty
$$

for all $m \in \mathbb{N}$.

The obvious question to be raised is how to characterize isomorphically polyhedral h_M in terms of the Orlicz function M. We suspect that the condition given in Theorem 4 is the correct one. It can be shown that if

$$
\liminf_{t \to 0} M(Kt)/M(t) < \infty \quad \text{for all } K < \infty,
$$

then for any sequence (η_k) decreasing to 1, the norm given by equation (6) does not satisfy part (b) of Theorem 3.

References

- [1] V. F. Fonf, *On a property of Lindenstrauss-Phelps spaces,* Funct. Anal. Appl. 13 (1979), 79-80 (translated from Russian).
- [2] V.F. Fonf, *Polyhedral Banach spaces,* Matematicheskie Zametki 30 (1981), 627-634 (translated from Russian).
- [3] 3. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I, Sequence Spaces,* Springer-Verlag, Berlin, 1977.
- [4] H. Rosenthal, *Class notes, Topics Course in Analysis,* University of Texas at Austin.
- [5] H. Rosenthal, *Some aspects of the subspace structure of infinite dimensional Banach spaces,* in *Approximation Theory and Functional Analysis* (C. Chuy, ed.), Academic Press, New York, 1990.