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ABSTRACT

A Banach space is polyhedral if the unit ball of each of its finite dimen-
sional subspaces is a polyhedron. It is known that a polyhedral Banach
space has a separable dual and is cg-saturated, i.e., each closed infinite
dimensional subspace contains an isomorph of ¢g. In this paper, we show
that the Orlicz sequence space h s is isomorphic to a polyhedral Banach
space if lime .0 M(Kt)/M(t) = oo for some K < co. We also construct an
Orlicz sequence space hps which is cg-saturated, but which is not isomor-
phic to any polyhedral Banach space. This shows that being cg-saturated
and having a separable dual are not sufficient for a Banach space to be

isomorphic to a polyhedral Banach space.

A Banach space is said to be polyhedral if the unit ball of each of its finite
dimensional subspaces is a polyhedron. It is isomorphically polyhedral if it
is isomorphic to a polyhedral Banach space. Fundamental results concerning
polyhedral Banach spaces were obtained by Fonf [1, 2].

THEOREM 1 (Fonf): A separable isomorphically polyhedral Banach space is
co-saturated and has a separable dual.

Recall that a Banach space is cg-saturated.if every closed infinite dimensional
subspace contains an isomorph of ¢y. Fonf also proved a characterization of
isomorphically polyhedral spaces in terms of certain norming subsets in the dual.
In order to state the relevant results, we introduce some terminology due to
Rosenthal [4, 5]. The (closed) unit ball of a Banach space E is denoted by Ug.
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Definition: Let E be a Banach space.
(1) A subset W C E’ is precisely norming (p.n.) if W C Ug, and for all
z € E, there is aw € W such that ||z = |w(z)|.
(2) A subset W C E’ is isomorphically precisely norming (i.p.n.) if W is
bounded and
(a) there exists K < oo such that [|z|| < K sup,ew |w(z)| for all z € E,
(b) the supremum sup,cy |w(z)| is attained at some wo € W for all
z€E.
It is easy to see that W C E’ is i.p.n. if and only if there is an equivalent
norm |{| - ||| on E so that W is p.n. in (E, ||| - ||])".

THEOREM 2 (Fonf): Let E be a separable Banach space. Then E is isomor-
phically polyhedral if and only if E' contains a countable i.p.n. subset.

This paper is devoted mainly to the problem of identifying the isomor-
phically polyhedral Orlicz sequence spaces. In §1, a characterization theorem
for isomorphically polyhedral Banach spaces having a shrinking basis is proved.
This result is applied in §2 to obtain examples of isomorphically polyhedral Or-
licz spaces. In §3, a non-isomorphically polyhedral, cp-saturated Orlicz sequence
space is constructed. Since every co-saturated Orlicz sequence space has a sepa-
rable dual, this shows that the converse of Theorem 1 fails, answering a question
posed by Rosenthal [4].

Standard Banach space terminology, as may be found in (3], is employed.
If (es) is a basis of a Banach space E, and || - [|| is a norm on E equivalent
to the given norm, we say that (e,) is monotone with respect to ||| - ||| if
35 anenlll < (| 5L anen|| for every real sequence (a.) and all k € N.

Terms and notation regarding Orlicz spaces are discussed in §2.

1. A characterization theorem

This section is devoted to proving the following characterization theorem. Read-
ers familiar with the proofs of Fonf’s Theorems will find the same ingredients
used here.

THEOREM 3: Let (e,) be a shrinking basis of a Banach space (E,|| - ||). The
following are equivalent.

(a) E is isomorphically polyhedral.
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(b) There exists an equivalent norm ||| - ||| on E such that (e,) is a monotone
basis with respect to ||| - |||, and for all } a,e, € E, there exists m € N
such that

o m
Il Zanenlll = ||| Zanenm'
n=1 n=1

Proof: Let (P,) be the projections on E associated with the basis (e,). The
sequence (P,) is uniformly bounded with respect to any equivalent norm on E.
Also, (P,) converges strongly to the identity operator on E, which we denote by
1. Since (e,) is shrinking, (P}) converges to 1’ strongly as well.

(a) = (b): By renorming, and using Theorem 2, we may assume that E’ con-
tains a p.n. sequence (wy). Fix sequences (ex) and (6x) in (0, 1) which are both
convergent to 0, and so that (1 + €,)(1 — 26x) > 1 for all k. For each k, choose

ny such that |[(1 — P, )Y wg|| < é for all n > ng. Define a seminorm [|| - ||| on E
by
(1) llzlll = sup(1 + ) max Pz, wy)|-

k 1<n<n;

Since (wg) C Ugr, |||z|l| < 2||z||sup||Px||. On the other hand, if = # 0, choose &
such that ||z|| = |wk(z)|. Then

lell = lwe(@)] < Kz Powe)l+ (@, (1= Poy)'ws)|
< WPuez, wi)| + Okl
Thus
(2) Izl = (1 + ex)(1 = ék)llz]l > [l]].
Hence ||| - ||| is an equivalent norm on E. It is clear that (e,) is monotone with
respect to |||-]/|. We claim that this norm satisfies the remaining condition in (b).

To this end, we first show that the supremum in the definition (1) is attained.
This is trivial if z = 0. Fix 0 # x € E. Choose k; < ky < --- and (j;) ,
1 < j; < ng, for all 4, so that

][] = Hm(1 + ex, )[(Ps; 2, wi,)|.
We divide the proof into cases.

CasE 1: lim; k; = lim; j; = co. In this case, P;;x — x in norm. Therefore

lim sup |(Pj, x, wk, )| = limsup |{x, wi,)| < |z
i i

Also, €x, — 0 as ¢ — co. Thus, |||z||| < ||z||, contrary to (2).
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CASE 2: lim; k; = oo, lim; j; # o0. By using a subsequence, we may assume
that j; = j for all . Then

(Pjz, wy,)| < ||Pzl.
Now choose k such that || P;z|| = [(Pjz, wi)|. If § < ng,

=l 2 1+ e)l(Pz, )|
(1 + el Pzl > || Pz,

a contradiction. Now assume j > ny; then

I(P; = Po)well < [1(1 = Py)'well + (1 = Pa,) well
< 26.
Hence
\Pizll = [(Pjz,ws)l
< |(Pnkx’wk)|+26k”x“
< @+ e) Yl + 28 lll-
Therefore,

Il < 1P=ll < ((L+ ex) ™" + 26)|l1ll] < [}]]]],
reaching yet another contradiction. Consequently, we must have

CaseE 3: lim; k; # oo. By using a subsequence, we may assume that the se-
quence (k;) is constant. Then it is clear that the supremum in (1) is attained.

Now for any = € E, choose k so that the supremum in (1) is attained at k.
Then it is clear that |||z||| = ||| P, z]||-

(b) = (a): Let (1) and (e,) be sequences convergent to 0, with1 > 7, > €, > 0
for all n. For each n, there is a finite Wy C U(g, .y’ such that

(3) 1+ &) Hll2lll < max [w(z)| < |||l
for all z € span{ey,...,e,}. Define a seminorm p on E by
(4) p(z) = sup(l + 1n) max max |(P;z,w)|.

1<j<n weWw;
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We will show that p is an equivalent norm on E, and the set
W={(1+m)Pw:neN1<j<nweW;}

is a countable p.n. subset of (E, p)’. Then E is isomorphically polyhedral by
Fonf’s Theorem (Theorem 2). Now let z € E. By (b), there exists m such that
ll|lz|l] = ||| Pmz|]|. Hence, by (3), and the fact that (e,) is monotone with respect

to || - Ill,
il

(Il Pl

(1+€m) wnelgv'),(" |(Pm, w)|

IA

(5) < (1+nm)wrr€13‘3cml<Pm$,w)l
< p(x)
< 2f|fflf-

Thus p is an equivalent norm on E. Next we show that the supremum in (4) is
attained. Fix x € E. Choose sequences ny < ng < --+, (jx), and (wg) such that
1 < jx < ng, wp € Wy, for all k, and p(z) = limg(1 + 7, )|(Pj, z, wk)|. First
assume that lim nx = oco. Then 7,, — 0. Since (e,) is monotone with respect
to ||| - |||, we have p(z) < [||z|||. But there exists k£ such that |||z||| = |||Pez|||,
and there is a w € Wy, such that |||Pez||| < (1 + €x)|w(Piz)|. Thus

1+ 7

p(@) 2 (L+m)lw(Pea)l 2 T~

W=(il > 1l

a contradiction. Therefore, limg ny # c0. By going to a subsequence, we may
assume that (n,) is bounded. Using a further subsequence if necessary, we may
even assume it is constant. Thus the supremum in (4) is attained. From this it
readily follows that the set W is a p.n. subset of (E, p)’. The countability of W
is evident. |

Remark: The assumption that the basis (e,) is shrinking is used only in the
proof of (a) = (b). If (e,) is assumed to be unconditional and (a) holds, then
(€ ) must be shrinking. For otherwise E contains a copy of £}, which contradicts
(a) by Fonf’s Theorem (Theorem 1). Thus the assumption of shrinking is not
needed if (e,) is unconditional.
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2. Orlicz sequence spaces

In this section, we apply Theorem 3 to identify a class of isomorphically polyhe-
dral Orlicz sequence spaces. Terms and notation about Orlicz sequence spaces
follow that of [3]. An Orlicz function M is a continuous non-decreasing con-
vex function defined for ¢ > 0 such that M(0) = 0 and lim;_,oc M(t) = oco. If
M(t) > 0 for all ¢ > 0, then it is non-degenerate. Clearly a non-degenerate
Orlicz function must be strictly increasing. The Orlicz sequence space {y
associated with an Orlicz function M is the space of all sequences (a,) such that
> M(|an|/p) < oo for some p > 0, equipped with the norm

llll = inf{p > 0: Y_ M(Jan|/p) < 1}.

Let e,, denote the vector whose sole nonzero coordinate is a 1 at the n-th position.
Then clearly (e,,) is a basic sequence in £3s. The closed linear span of {e,} in
£y is denoted by hps. Alternatively, hps may be described as the set of all
sequences (a,) such that Y M(|an|/p) < oo for every p > 0. Additional results
and references on Orlicz spaces may be found in [3]. For a real null sequence
(a,), let (a}) denote the decreasing rearrangement of the sequence (|a,|).

THEOREM 4: Let M be a non-degenerate Orlicz function such that there exists a
finite number K satisfying lim,_,o M (Kt)/M(t) = oco. Then hys is isomorphically
polyhedral.

Proof: For all k € N, let

by, = inf{M(Kt): 0<t< M‘l(l)},

M(®) k

Then limg_, b = 00. Thus there is a sequence (1) decreasing to 1 such that
> (1— b;_:l)_l for all k. Define a seminorm on hys by

(6) llltan)ill = supmell(a3, ., i, 0, )l

where || - || is the given norm on hps. It is clear that ||| - ||| is an equivalent norm
on hys, and that (e,) is a monotone basis with respect to ||| - [||. It suffices to
show that ||| - ||| satisfies the remaining condition in part (b) of Theorem 3. We
first show that if (a,) is a positive decreasing sequence in hps, then there is a k
such that

(7) “(an)“ < nk”(al’ N PR U )“
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Assume otherwise. There is no loss of generality in assuming that ||(a,)|| = 1.
Then ¥ M(a,) =1 and Z:,:l M{(nra,) < 1 for all k. In particular, note that
the second condition implies ax < M~1(1/k) for all k, since 7 > 1 and (a,) is
decreasing. Now choose m such that ||(0,...,0,am,@m41,...)|| < K~1. Then
> . M(Ka,) <1. Also M(Kayn) > b M(ay) for all n > m. Therefore,

1 = ZM(an)
m—1 oo
= ZM(an)+ Z M(an)

m—1

< nmlenm 10n +bIZMKan)
n=1 n=m

< nm 1+b“

< 1,

a contradiction. Hence (7) holds for some k. Now for a general element (a,) €
has, choose m such that

”(an)“ = “(a;)” < nmll(a;,- ..,a:n,O,...)H.

Note that since limg nk)i(a3, . .., af,0,...)|| = [|(an)||, the supremum in equation
(6) is attained, say, at j. Then choose i large enough that aj,...,a; are found
in {|a1],-..,|ai]}. With this choice of 1,

lI(ar, .- a0, )| 2 mjli(at, - -5 65,0, )l = [[[{an)]l]

by choice of j. Since the reverse inequality is obvious,

lll{en)lll = Ili(a1, - .-, @i, 0, I,

as required. |

3. A counterexample

THEOREM 5: Let M be a non-degenerate Orlicz function. Suppose there exists
a sequence (t,) decreasing to 0 such that

n M(tn)

for all K < 0o. Then hys is not isomorphically polyhedral.
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Proof: Suppose that hps is isomorphically polyhedral. By Theorem 3 and the
remark following it, one obtains a norm ||| - ||| on hps as prescribed by part (b)
of the theorem. Fix a > 0 so that |||z||| < a = ||z|| < 1. Choose a sequence (1)
strictly decreasing to 1. Let n; = min{n € N: m|||tse1||| < a}. Ifny < ny <
- -+ < ny, are chosen so that n||| Z;.C:l tn;€5]l] < a, then mey1]|| Z;;l tn, €5l < o

Hence
k
{n > ni: et lll Y tnse5 + taernall] < @) # 0.
i=1
Now define
k
(8) kg1 = min{n > ng: Mg lll D tny€5 + trexalll < ).
i=1

This inductively defines a (not necessarily strictly) increasing sequence (n) sat-
isfying
k

(9) 2elll Y tnseslll < @

i=1
for all k£ and the minimality condition (8). In particular, for all &, ||| Z;=1 tn,e;ll
< a0 | 2;7:1 tn;e;j]l < 1 by the choice of a. Therefore Z_’;:l M(tn;) <1 for all
k. For all K < oo and all £ € N,

k. k

j=1

Consequently, 3 52, M(Ktn;) < oo for all K < co. Hence z = Yie1tn€;

converges in hps. Clearly |||z||| = limg ||| 2;;1 tn;€5lll < a. We claim that in
fact |||z||| = @. Otherwise, suppose |||z||| = 8 < a. Since (e,) is monotone with
respect to || - ||, |||2;7=1 tn;€j]|l < B < a for all k. By the convergence of z,

lim; ¢,; = 0. So one can find i such that |||tn,e;||| < o — § for all j. Then

i i
1Y tnse5 + tnieinalll S DY tnseslll + lltnceiralll S B+a = B=c.
j=1 j=1
By the minimality condition (8), ni41 = n;. Similarly, we see that n; = n; for all
§ > 4. This contradicts the convergence of z and proves the claim. But now, by
9), |l Z;‘___l tn;€;l|l < a = |||z||| for all k, contradicting the choice of the norm

-n. .
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We now construct an Orlicz function M satisfying Theorem 5 while hjps
is ep-saturated. We begin with some simple results which help to identify the
co-saturated Orlicz sequence spaces.

PROPOSITION 6: Let M be a non-degenerate Orlicz function. Then the following
are equivalent.

(a) ham is co-saturated;

(b) has does not contain an isomorph of €F for any 1 < p < oo;

{c) for all g < o0,
o MOY
0<>\,?51 M(A)te

Proof: Clearly (a) implies (b). If (a) fails, let Y be an infinite dimensional
closed subspace of hjs which contains no isomorph of ¢y. By [3, Proposition
4.a.7], Y has a subspace Z isomorphic to some Orlicz sequence space hy. Then
hx contains no isomorph of ¢g. By [3, Theorem 4.a.9], hy contains an isomorph
of some 7,1 < p < oo. Hence Y contains a copy of ¢°, and (b) fails. The
equivalence of (b) and (c) also follows from (3, Theorem 4.a.9]. |

PROPOSITION 7: Let (b, )72 be a decreasing sequence of strictly positive num-
bers such that

brtn
sup mt

mn  bn

K™ < oo forall K < oo.

Define M to be the continuous, piecewise linear function such that M(0) = 0,

b, if 27" 1<t<2™ n>0
M@=4 " ’ ’
( ) { by if 2-1 « ¢

Then the Orlicz sequence space hyy is cp-saturated.

Proof: It is clear that M is a non-degenerate Orlicz function. For all n > 0,
27"~1p, < M(27™) < 27"b,,. Hence

M(z—m—n)
Ca=sw Tty

m,n

b
2™ < 2sup =+ (297 H)™ < oo

m,n n

for any ¢ < co. Now if \,t € (0, 1], choose m,n > 1 such that t € (2-™,2"™+1],
A€ (27™,27"*1]. Then At € (2™~ ",2 ™" "*2|, If m > 2, then

M) _ o M@= D)

(m—2)9 « 49
Moy <2 mey 2 st
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If m = 1, then t > 27. Therefore

M(Xt)
<tTI<29
M(A)te — 2
Thus
sup M) < 00
0<hi<1 M(A)te ’
and hjs is cg-saturated by the previous proposition. | |

THEOREM 8: There exists an Orlicz function M such that hps is co-saturated
but not isomorphically polyhedral. In particular, a co-saturated space with a
separable dual is not necessarily isomorphically polyhedral.

Proof: It is well known that every cp-saturated space hjs has a separable dual.
Thus the second statement follows from the first. Let ag = a3 = a2 =1, and let
a; = (e/j) for j > 3. Then (a;) is a decreasing sequence. Choose a decreasing
sequence (c; )?‘;0 of strictly positive numbers such that ¢;11 < ajasgjec; for all
j > 0. For convenience, set s, = Z;’l=1 j for all n > 1. Now define by = cp,
by = c1, and by, 4k = Cnt1/@nt+1-k Whenever n > 1 and 1 <k <n+ 1. We first
show that the sequence (b;) satisfies the conditions in Proposition 7.

CramM 1: (b;) is a decreasing sequence.
One verifies directly that bg > by > by. fn >1and 1<k <j<n+1,

Cn+1 > Cn+1
Ontl—k  Ontl—j

b3n+k = = b3n+j

since (a,,) is decreasing. Finally,

b _ Cn42
n 1 -
Snt1t+ a

< Ag(n+1)2Cn+1 S Cnt1 = b, tnt1

n+

for all n > 1. This proves Claim 1.

CLAIM 2: bpmyn < apby, forallm >0, n > 2.

Express n = s; + k, m+n = s; +1, where 1 <1 < j,1 <k <i+1, and
1<1<j+1. Ifi=j, thenl—k = m. Moreover, i+1—k > max{l—k,i+1-1},
from which it follows that a; 41—k < @1-k@;41-1. Therefore,

Citl <a Cit1
m

< = Qmbn.
Qip1-1 Qit1—k

bm+n =
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Now consider the possibility that j > ¢. Note first that
m=(m+n)—n<s;+j+1—(si+1)<s;+5 <252

Hence a,, > apj2. Using Claim 1 and the properties of the sequence (¢;), we

obtain
Cs
j+1
bm+n < bsj+l = -
Qaj
< agpc; £ @mCiyl
= amba.-+'i+1 S ambn-
CLAM 3:

supI—J"'—Jr"K"l <o forall K < oo.

m,n n

First observe that for: > 1,1 <k <i+1,and K < o0,

. Ci41 . v
b3i+kK8’+k = a——’ﬁ-st'k < agizciK""““
i+1-

< cpageKuTHHL 0
as ¢ — 0o. Hence (b, K™), is bounded. Therefore

sup Sup by4n K™ /by < 00.

n=1,2 m
On the other hand, using Claim 2,

bm+n

sup sup
n>2 m n

K™ <supan,K™ < ©
m
by direct verification.
Define the function M using the sequence (b;) as in Proposition 7. Using
Claims 1 and 3, and the proposition, we see that hyy is co-saturated. To complete
the proof, it suffices to find a sequence (t,) as in Theorem 5. We claim that the

sequence (t,) = (27°~) will do. Clearly (¢,) decrease to 0. Fix m € N. For all

n>m,
Cn
bs,.—m = bs,,_1+(n—m) = a
Hence
_ by,
Mart) = M) g Deem
B Cn _ooamtl g
- Qpm28n—™ - o 928a+1
2m+1 ba 2m+1
= = M(t,)

O 252t T,
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whenever n > m. Therefore,

no M(tn)

forallme N. 1

The obvious question to be raised is how to characterize isomorphically
polyhedral hjs in terms of the Orlicz function M. We suspect that the condition
given in Theorem 4 is the correct one. It can be shown that if

lirtnigfo(Kt)/M(t) < oo forall K < oo,

then for any sequence (7 ) decreasing to 1, the norm given by equation (6) does
not satisfy part (b) of Theorem 3.
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